> mdat<-read.csv("D:thR/mdat.csv", sep=";", header=TRUE)
> head(mdat)
Number Acquirer FirmsizeA Target FirmsizeT Year Stake
Categories Performance
1 M01 KinhDo
listed Wall's foreign 2003 50% acquisition positive
2 M02
KinhDo listed Tribeco listed 2005 35.40% acquisition negative
3 M03
Sacombank listed ANZ foreign 2005 10% acquisition positive
4 M04 ACB
listed StandardCharter foreign
2005 10% merger
positive
5 M05 OCBC
foreign VPBank Other 2006 10% acquisition positive
6 M06 HSBC
foreign Techcombank Other 2007 15% acquisition mix
> hieuqua1 <- xtabs(~Performance+FirmsizeA,
data=mdat)
> hieuqua1
FirmsizeA
Performance foreign listed other SOE
mix 8 2 1 2
negative 12 10 0 0
positive 20 20 2 2
> hieuqua2 <- xtabs(~Performance+FirmsizeT, data=mdat)
> hieuqua2
FirmsizeT
Performance foreign listed other SOE
mix 1 5 5 2
negative 1 14 6 1
positive 7 21 10 6
> hieuqua3 <- xtabs(~Performance+Categories,
data=mdat)
> hieuqua3
Categories
Performance acquisition merger
mix 12 1
negative 19 3
positive 36 8
> hieuqua4 <- xtabs(~Performance+Stake1,
data=mdat)
> hieuqua4
Stake1
Performance above under
mix 10
3
negative 15 7
positive 34 10
> hieuqua1 <-
read.table("D:thR/hieuqua1.txt", header=TRUE)
> hieuqua1 %% hiệu quả
thương vụ theo công ty bên mua
pos
neg
foreign
20 20
domestic
24 15
> chisq.test(hieuqua1)
Pearson's
Chi-squared test with Yates' continuity correction
data:
hieuqua1
X-squared = 0.64913, df = 1, p-value = 0.4204
> fisher.test(hieuqua1)
Fisher's
Exact Test for Count Data
data:
hieuqua1
p-value = 0.3675
alternative hypothesis: true odds ratio is not
equal to 1
95 percent confidence interval:
0.2319835
1.6743821
sample estimates:
odds ratio
0.6287781
> hieuqua3 <-
read.table("D:thR/hieuqua3.txt", header=TRUE)
> hieuqua3
neg pos
acquisition
31 36
merger
4 8
> fisher.test(hieuqua3)
Fisher's
Exact Test for Count Data
data:
hieuqua3
p-value = 0.5333
alternative hypothesis: true odds ratio is not
equal to 1
95 percent confidence interval:
0.4097017
8.5311756
sample estimates:
odds ratio
1.710729
> hieuqua4 <-
read.table("D:thR/hieuqua4.txt", header=TRUE)
> hieuqua4
pos
neg
under35
34 25
above35
10 10
> fisher.test(hieuqua4)
Fisher's
Exact Test for Count Data
data:
hieuqua4
p-value = 0.6086
alternative hypothesis: true odds ratio is not
equal to 1
95 percent confidence interval:
0.4323871
4.2581433
sample estimates:
odds ratio
1.354644
> chisq.test(hieuqua4)
Pearson's
Chi-squared test with Yates' continuity correction
data:
hieuqua4
X-squared = 0.11087, df = 1, p-value = 0.7392
> hieuqua2 <-
read.table("D:thR/hieuqua2.txt", header=TRUE)
> hieuqua2 %%% đánh giá thương vụ theo bên bán (target)
pos
neg
foreign
7 2
domestic
37 33
> fisher.test(hieuqua2)
Fisher's
Exact Test for Count Data
data:
hieuqua2
p-value = 0.2851
alternative hypothesis: true odds ratio is not
equal to 1
95 percent confidence interval:
0.5355356
32.4313082
sample estimates:
odds ratio
3.0812
> hdmodel1 <-
xtabs(~FirmsizeA+Categories+Performance, data=mdat)
> ftable(hdmodel1)
Performance mix negative
positive
FirmsizeA Categories
foreign
acquisition 8 11
19
merger 0 1
1
listed
acquisition 2
8 13
merger 0 2
7
other
acquisition 1 0
2
merger 0 0
0
SOE
acquisition 1 0
2
merger 1 0
0
gộp lại thành bảng như sau:
FirmsizeA
Categories Neg Pos
1 foreign
acquisition 19 19
2
foreign merger 1 1
3 domestic
acquisition 12 17
4
domestic merger 3 7
Chạy mô hình logit đa biến:
> hqmodel1 <-
read.table("D:thR/hqmodel1.txt", header=T)
>
contrasts(hqmodel1$FirmsizeA)=contr.treatment(levels(hqmodel1$FirmsizeA),
base=2)
> hqmodel1
FirmsizeA Categories Neg Pos
1 foreign
acquisition 19 19
2
foreign merger 1 1
3 domestic
acquisition 12 17
4
domestic merger 3 7
>
contrasts(hqmodel1$Categories)=contr.treatment(levels(hqmodel1$Categories),
base=2)
>
fit.hqmodel1=vgml(cbind(Pos,Neg)~FirmsizeA+Categories,
data=hqmodel1,family=multinomial)
Error in vgml(cbind(Pos, Neg) ~ FirmsizeA +
Categories, data = hqmodel1, :
could not
find function "vgml"
>
fit.hqmodel1=vglm(cbind(Pos,Neg)~FirmsizeA+Categories,
data=hqmodel1,family=multinomial)
> summary(fit.hqmodel1)
Call:
vglm(formula = cbind(Pos, Neg) ~ FirmsizeA +
Categories, family = multinomial,
data =
hqmodel1)
Pearson residuals:
[,1]
[1,] 0.05912
[2,] -0.26206
[3,] -0.06886
[4,] 0.12370
Coefficients:
Estimate Std. Error z
value Pr(>|z|)
(Intercept) 0.3685 0.7267
0.507 0.612
FirmsizeAdomestic 0.3934 0.4753
0.828 0.408
Categoriesacquisition -0.3877
0.6874 -0.564 0.573
Number of linear predictors: 1
Name of linear predictor: log(mu[,1]/mu[,2])
Residual deviance: 0.0912 on 1 degrees of freedom
Log-likelihood: -6.0144 on 1 degrees of freedom
Number of iterations: 3
Reference group is level 2 of
the response
Mô hình không có ý nghĩa thống kê, các
p-value quá lớn (lớn hơn 0,05). Chưa đủ cơ sở để kết luận quy mô công ty và loại
hình thương vụ ảnh hưởng lên tính tích cực/tiêu cực của kết quả sau M&A.
By Lavender
By Lavender
No comments:
Post a Comment